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Abstract: Natively unfolded proteins present a challenge for structure determination because they populate
highly heterogeneous ensembles of conformations. A useful source of structural information about these
states is provided by paramagnetic relaxation enhancement measurements by nuclear magnetic resonance
spectroscopy, from which long-range interatomic distances can be estimated. Here we describe a method
for using such distances as restraints in molecular dynamics simulations to obtain a mapping of the free
energy landscapes of natively unfolded proteins. We demonstrate the method in the case of R-synuclein
and validate the results by a comparison with electron transfer measurements. Our findings indicate that
our procedure provides an accurate estimate of the relative statistical weights of the different conformations
populated by R-synuclein in its natively unfolded state.

Introduction

An overall description of the conformational space of a
protein is obtained through the characterization of the range
of structures accessible to it, including those comprising the
folded and unfolded states as well as the metastable states
populated during the folding and misfolding processes.1,2 The
characterization of these states is particularly important
because they often play crucial roles in the folding and
misfolding processes.1,3,4 Additionally, a wide range of
proteins, many of which are involved in gene regulation and
signal transduction, are being recognized as natively unfolded
or as containing extended unstructured regions.3 Since these
states are formed by heterogeneous ensembles of structures,5-14

describing them in terms of ensembles of conformations is
essential.15-17 Molecular dynamics simulations are capable
of generating such conformational ensembles,18 especially
with the incorporation of experimental restraints, which
augments the information that can be extracted from experi-
mental measurements by providing atomic-level structural

detail.14,19-29 In using measurements derived from nuclear
magnetic resonance (NMR) spectroscopy, however, it is
important to account for the fact that the recorded values
represent time- and ensemble-averages. To achieve this result,
time- or ensemble-averaging can be performed within mo-
lecular dynamics simulations.9,14,19–21,23,24,26–32 At each time-
step, the time- or ensemble-averaged observables are com-
pared with their corresponding experimental values, and an
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energy penalty is added to enforce the agreement with the
experimental information.9,14,19–21,24,26,26,28–30,32,33 In this
way, the simulations are biased toward structures that satisfy
the restraints in a time- or ensemble-averaged manner. This
type of simulations has been used to characterize the
ensembles of conformations representing a variety of different
protein states, including disordered, intermediate, transition
and folded states.2,26–28,33,34

For globular proteins in their native or near-native states, a
range of experimental techniques, including X-ray crystal-
lography and NMR spectroscopy, provide structural information
that can be used as restraints.35 Disordered states, however,
present additional challenges. For instance, nonsequential NOEs,
which provide a rich source of information for determining
folded structures, are seldom detected, as the internuclear
distances are too large and variable.6 In other cases, such as
for 3J couplings and secondary chemical shifts, averaging over
the heterogeneous range of structures leads to a considerable
reduction of the structural information that can be extracted from
the data.

A particularly useful source of structural information about
conformationally heterogeneous states of proteins is represented
by paramagnetic relaxation enhancement (PRE) NMR spectro-
scopy.6,8,9,14,36-41 This technique exploits the change in the
relaxation rate of a nuclear spin induced by the presence of a
distant paramagnetic group to infer the distance between the
two centers. This effect is sensitive up to distances in the range
12-20 Å, making it useful for characterizing disordered
states.6,8,9,14,36 These long-range distances have been used as
restraints in molecular dynamics simulations to determine
structural ensembles for the disordered states of several
proteins,9,14,36,42 including R-synuclein,10,11 a 140-residue na-
tively unfolded protein.43-45 This protein is capable of forming
amyloid fibrils both in Vitro and in ViVo, and it is the primary
constituent of the deposits observed in Parkinson’s disease.46-50

It has also been proposed that in its natively unfolded state, the

C-terminus of R-synuclein forms transient intramolecular in-
teractions with the N-terminus and with the central non-�-
amyloid component (NAC) region (residues 61-95),51 which
is essential for aggregation,52-59 thus reducing the overall
aggregation propensity of this protein.10,11,60,61

In this work we incorporate PRE-derived distances as
ensemble-averaged restraints in molecular dynamics simulations
to characterize the natively unfolded state of R-synuclein. After
a careful validation of the method that we used, we employ it
to obtain a detailed description of the free energy landscape of
R-synuclein, which provides a representation of the statistical
weights of the variety of conformational states populated by
this protein.

Methods

Simulation Methods. All simulations were carried out within
the CHARMM simulation package,62 modified to allow interatomic
distance restraints to be applied as ensemble averages. The
CHARMM19 polar hydrogen representation was used. Newton’s
equations of motions were employed and the temperature was
controlled using the Nosé-Hoover thermostat. Bond lengths were
constrained with the SHAKE algorithm,63 allowing for an integra-
tion time-step of 2 fs.

Unrestrained Molecular Dynamics Simulations. We generated
five different ensembles (UERg23, UERg20, USRg24, UST590,
and RC) using molecular dynamics simulations in which no
restraints derived from experimental measurements were applied.
An explanation of the abbreviated names and the details of the
simulation protocols are provided in Table 1. Ensembles UERg23
and UERg20 were used as reference ensembles (see below), from
which PRE-like distances were back-calculated and used as
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restraints in the simulations that we carried out for validating the
method. USRg24 and UST590 were used to assess the information
content of the restraints and the effects of restraining on the degree
of expansion of the protein structures. RC represents a disordered
polypeptide chain, in which only excluded volume interactions are
taken into account; this ensemble was generated using CHARMM19
in Vacuo with no electrostatic interactions and with the nonbonded
interactions truncated to maintain only the repulsive part of the
van der Waals potential.

For each ensemble, we began the simulations by heating the
protein to the designated temperature followed by equilibration for
0.1 ns prior to the collection of structures. Structures were collected
every 5 ps (2500 steps) except for the RC ensemble, for which
they were saved and every 20 ps. This time interval was sufficient
to ensure that subsequent structures were not correlated.

The UERg23 ensemble was filtered to increase the degree of
residual structure (see Results) by selecting only those structures
with more than 15 contacts between the NAC region (residues
61-95) and the C-terminus (residues 110-140). Two residues were
considered to be in contact if their CR atoms were within 8.5 Å of
each other, following the definition of Dedmon et al.11

Molecular Dynamics Simulations with Ensemble-Averaged
Restraints. In molecular dynamics simulations with ensemble-
averaged restraints, multiple replicas are simulated in par-
allel.9,11,14,19–21,24,26–29,31–33 A reaction coordinate (F) is defined
as the sum of the difference between the calculated (f l

calc) and the
reference (f l

ref) values of the observables9

F(t) ) Nrestr
-1 ∑

l)1

Nrestr

(f l
ref - f l

calc(t))2 (1)

where the index l runs over the Nrestr restrained observables. In the
case of PRE-derived distances, we define f l

calc as

f l
calc(t) ) dij

calc(t) ) (Nrep
-1 ∑

k)1

Nrep

rij,k
-6(t))-1/6

(2)

where rij, k(t) is the distance between the CR atom of residue i and
the amide hydrogen of residue j calculated for replica k of the
restrained ensemble at time t and Nrep is the number of replicas.

In the case of the tests with the reference ensembles, f l
ref is taken

as the ensemble-averaged distance d ij
ref

dij
ref ) (Nref

-1 ∑
k)1

Nref

rij,k
-6)-1/6

(3)

where Nref is the number of structures in the reference ensemble.
When experimental data were used, f l

ref is the distance calculated
as described below.

During the PRE-restrained molecular dynamics simulations,
dij

calc(t) is allowed to vary freely between dij
ref - L and dij

ref + U,
where L and U are suitably chosen values of the lower (L) and
upper (U) bounds (see below). Outside the square well, a harmonic
penalty of the form

RNrep

2
(F(t) - F0(t))

2 (4)

is added to the energy if F(t) > F0(t), where

F0(t) ) min[F(τ)] (0 e τ e t) (5)

and R is a force constant associated with the restraints.64 In this
way, as the simulation proceeds, the ensemble is progressively
biased toward structures that satisfy the restraints.

Ensemble-restrained molecular dynamics simulations were car-
ried out using the SASA65 implicit solvation model. Multiple
replicas were simulated in parallel, and an extra phase was included
immediately after the heating stage during which R was increased
from its starting value of 500 kcal mol-1 Å-2 to its final value
(364,500 kcal mol-1 Å-2) by a factor 3 every 10 ps. Nrep, L, and U
were varied as discussed below. The structures collected at each
point in time were pooled together into one ensemble prior to
analysis.

Calculation of Distance Restraints: Experimental Distance
Restraints. In a spin label NMR experiment, the 1H-15N hetero-
nuclear single quantum coherence (HSQC) spectra of a spin-labeled
protein are recorded with the spin label in its oxidized (paramag-
netic) and reduced (diamagnetic) states. The effects due to the
presence of a free electron are quantified by the intensity ratio,
Iox/Ired, which compares the intensity (height) of the cross-peaks in
the oxidized (Iox) and reduced (Ired) states. Distances were calculated
from Iox/Ired as described previously,11 but with some modifications
as discussed below.

We used here a set of 478 PRE-derived distances described
previously to characterize the natively unfolded state of R-sy-
nuclein.11 In addition, we considered an additional set of 117
distances obtained from a new spin label positioned at N122; the
experimental procedure used was the same as before.11 Thus, we
employed a total of 595 PRE-derived distance restraints (i.e., 4.25
restraints on average per residue).

When enforcing PRE-derived distance restraints, there is a degree
of tolerance toward violations in the ensemble-averaged back-
calculated distances dij (eq 2) at each point in time because a
contribution toward F (eq 1) is only made if dij

calc(t) is outside a
square well-defined by dij

ref - L and dij
ref + U. The exact value of L

and U was varied during the testing phase as discussed in Results.
The nature of the equations used to compute a distance from

Iox/Ired
6,39 implies that for high Iox/Ired, a small change in Iox/Ired

results in a large change in the calculated distance. We therefore
treated the distance that would be calculated if Iox/Ired ) 0.85 (dij

max)
as the longest reliable distance. dij

ref > dij
max were used as “negative”(65) Ferrara, P.; Apostolakis, J.; Caflisch, A. Proteins 2002, 46, 24–33.

Table 1. Different Conformational Ensembles Discussed in This Worka

name solvent t Nrep Nstructures T 〈Rg〉 brief description

UERg23 EEF173 400 20 23 675 540 23.2 ensemble for which 〈Rg〉 is set to be similar to that of a previously
determined R-synuclein ensemble11

UERg20 EEF173 320 16 64 000 505 20.5 compact ensemble used for validating the generality of the method
USRg24 SASA65 260 20 52 000 515 24.1 ensemble for which 〈Rg〉 is set to be similar to that of UERg23
UST590 SASA65 320 16 64 000 590 32.6 ensemble in which T is chosen to best reproduce UERg23
RC vacuum 200 1 10 000 523 41.8 random coil ensemble
RSRg23 SASA65 288 24 57 600 590 23.2 ensemble obtained by using PRE-like distances calculated from UERg23
RSexp SASA65 200 24 48 000 490 32.1 ensemble obtained by using experimentally derived PRE distances

a The names used to identify the ensembles are provided together with their main features. “U” and “R” refer to unrestrained or restrained
simulations, respectively, and “RC” to the random coil ensemble. “E” and “S” refer to the type of implicit solvent model used (EEF1 and SASA,
respectively); the remainder of the name indicates the distinguishing feature of the specific ensemble. “Solvent” specifies the implicit solvent model
used, t indicates the total sampling time of the simulation in ns, Nrep specifies the number of independent replicas used in the sampling and Nstructures the
total number of structures collected during the simulations. T is the simulation temperature in Kelvin and 〈Rg〉 is the ensemble-averaged radius of
gyration in Å. For RSexp, the 〈Rh

-1〉-1 is given rather than the 〈Rg〉.
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restraints37,39 by assigning only a lower bound corresponding to
dij

max - L. In addition, values Iox/Ired < 0.15 may be unreliable,37,39

as any experimental uncertainty is large relative to the size of the
measured Iox/Ired. The distance that would be calculated if Iox/Ired )
0.15 (dij

min) was therefore the shortest distance to be given both lower
and upper boundaries. Any dij

ref < dij
min was assigned only an upper

bound corresponding to dij
min + U.

Calculation of Distance Restraints: Reference Distance
Restraints. To test the method that we used in this work, a set of
reference distance restraints, dij

ref, were calculated from the reference
ensembles UERg23 and UERg20 to be analogous to the distances
that would be obtained from a spin label NMR experiment. Eight
residues evenly distributed along the R-synuclein sequence were
designated to be “spin-labeled”. The distance between the CR atom
of the spin-labeled residues i and the amide hydrogens on all
nonadjacent residues j were calculated from and averaged over the
Nref structures comprising each reference ensemble. Distances
between atoms belonging to the same or sequentially adjacent
residues were removed to give 1000 restraints in total, similar to
the maximum number of distances that is typically determined
experimentally. A “free” data set consisting of a further 1000
distances was also calculated by considering a second set of eight
spin-labeled residues; these distances were used for cross-validation.
A r-6 averaging was used to simulate the averaging inherent in a
spin label NMR experiment. Each reference distance restraint was
assigned a lower bound, L, and upper bound, U, in a similar manner
as for experimental data.

Analysis and Comparison of Ensembles of Structures.
Calculation of Rg and Rh. The radius of gyration, Rg, was
calculated from the positions of the heavy atoms of each structure.
When experimental restraints were used, the ensemble-averaged
hydrodynamic radius, 〈Rh

-1〉-1, was computed using the program
HYDROPRO66 with default settings for comparison with the
experimental value. A phenomenological relationship between Rg

and Rh, which was parametrized by linear regression,9 was used to
convert the calculated Rg for each structure into an Rh. The harmonic
mean was computed to reflect the averaging inherent in the
experimental measurement of Rh by NMR diffusion experiments.67

Calculation of Q Factors and of S Factors. The agreement
between the average values of a given observable in the reference
ensemble or measured experimentally (f l

ref) and those back-
calculated from and averaged over the ensemble obtained using
restrained molecular dynamics simulations (f l

calc) was quantified with
a quality factor68

Q )
(∑

l)1

Nobs

(f l
ref - f l

calc)2)1/2

(∑
l)1

Nobs

(f l
ref)2)1/2

(6)

where Nobs is the number of observables; low values of Q indicate
good agreement.

To quantify the agreement between two distributions we used
the distance32

sl ) ∑
m)1

Nbins

|pm,l
ref - pm,l

calc| (7)

where Nbins is the number of bins into which the histograms were
divided and pm, l is the normalized probability of finding a particular
observable in bin m of histogram l. sl ranges from 0 to 2, with low
values representing similar histograms. Summation over all Nobs

histograms quantifies the overall agreement of two ensembles in
terms of distance distributions

S ) Nobs
-1 ∑

l)1

Nobs

sl (8)

The values of sl and S depend on the bin width, the ideal value
of which depends in turn on the width of the distributions being
compared. A bin width of 1 Å was found to be suitable for the
wide range of distance and Rg distributions encountered. Using the
same bin width for all distributions allows comparisons of the sl

values computed from different pairs of atoms in the same and
different ensembles. It is also a prerequisite for combining the
various sl into an overall S value.

The statistical error in the Q and S values was estimated by
randomly splitting the data into two sets and computing a Q or S
value for each set with respect to the reference ensemble. The
splitting was repeated 10 times such that 20 different Q or S values
were collected. The standard deviation of these values was taken
as the statistical error. The convergence of the ensemble-restrained
molecular dynamics simulations was checked by comparing Q or
S values calculated separately for the first and second halves of
the simulation and monitoring Rg throughout time (data not shown).

Calculation of sl Maps. The sl values for all Nobs distance
distributions were plotted in two dimensions according to the pairs
of residues for which the distribution is defined. The MATLAB
(The MathWorks, Inc.) griddata function was used to interpolate
between the nonuniformly spaced points for which sl values were
computed.

Definition of Residual Contact Probability Maps. The residual
contact probability (RCP)11 is defined as -ln(pij

calc/pij
ref), where pij

calc

and pij
ref are the probabilities of contact formation in the ensemble

of interest and in the random coil ensemble, respectively. The
pseudoenergy value is smoothed over a window of seven residues
to account for the concentration of distance restraints around the
spin-labeled residues.

Definition of Distance Comparison Maps. Distance comparison
(DC) maps were created by plotting the root-mean-square distance
(rmsd) between two residues, i and j, normalized by the rmsd
computed from the random coil ensemble

DCij )
〈d ij

calc2〉1/2

〈d ij
rc2〉1/2

(9)

Here, 〈d ij
calc2〉1/2 and 〈d ij

rc2〉1/2 are defined as

〈dij
2〉1/2 ) (Nstruct

-1 ∑
k)1

Nstruct

dij,k
2 )1/2

(10)

where Nstruct is the number of structures in the calculated or random
coil ensemble. Similar results were obtained if 〈dij

rc2〉1/2 was computed
using an equation that predicts the rmsd between two residues with
sequence separation Nsep for a random flight chain with excluded
volume and dihedral angles taken from a PDB coil library.69 The
normalization by 〈dij

rc2〉1/2 is important because it removes the
dependence of the inter-residue distance on the sequence separation,
allowing pairs of residues with different sequence separations and
also proteins of different lengths to be compared. The DC map
was not smoothed and was plotted as discrete points using the
MATLAB imagesc function.

Detection of Correlations between Distance Distributions. The
correlation between two distance distributions was investigated by
computing sp values (analogous to sl values, eq 7) to quantify the
similarity between the 2D distance histograms p(rAB, rAC) and
p(rAB)/p(rAC), where rAB and rAC are the distances between the CR
atoms of residues A and B or A and C, respectively. A, B, and C

(66) Garcia de la Torre, J.; Huertas, M. L.; Carrasco, B. Biophys. J. 2000,
78, 719–730.

(67) Wilkins, D. K.; Grimshaw, S. B.; Receveur, V.; Dobson, C. M.; Jones,
J. A.; Smith, L. J. Biochemistry 1999, 38, 16424–16431.

(68) Bax, A. Protein Sci. 2003, 12, 1–16. (69) Zhou, H. X. Biophys. J. 2002, 83, 2981–2986.
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came from a set of 10 residues spaced approximately 14 positions
apart along the 140-amino-acid sequence. We chose a set of residues
that were not involved in either the experimental or reference
distance restraints so that the identification of correlations was not
complicated by the direct influence of a restraint on the interatomic
distances. High values of sp indicate that rAB and rAC are correlated,
that is, p(rAB, rAC) * p(rAB)/p(rAC).

The sp values were displayed as 2D contour plots of sp with
respect to B and C for each value of A. Because A, B, and C each
take only 10 values, the MATLAB (The MathWorks, Inc.)
interp2 function was used to linearly interpolate the sp values
in 2 dimensions, giving an estimated sp value for all possible BC
combinations for each of the chosen A.

Free Energy Landscapes. Free energy landscapes were obtained
for each ensemble by plotting the 2D histogram of p(Rg, SASA)
according to

F(Rg, SASA) ) -ln p(Rg, SASA) (11)

where p(Rg, SASA) is the joint probability distribution of the Rg

and the solvent exposed surface area (SASA).

Results

Our aims in this work are first to establish a general method
for using distance information derived from spin label NMR
measurements as ensemble-averaged restraints in molecular
dynamics simulations to determine ensembles of conformations
representing disordered states of proteins and then to use this
method to determine the free energy landscape of R-synuclein
in its monomeric state under physiological conditions. Thus we
first demonstrate that molecular dynamics simulations with
ensemble-averaged distance restraints are capable of reproducing
a known ensemble of conformations with the correct statistical
weights. We then apply the method using experimentally derived
distances for R-synuclein and further validate the results by a
comparison with distance distributions derived from electron
transfer (ET) measurements,70 which were not used as restraints
in the calculations.

Generation of Reference Ensembles. To test and validate the
strategy that we follow to carry out molecular dynamics
simulations with ensemble-averaged distance restraints, we apply
the “test of the reference ensemble”.32,71,72 In this test, a
reference ensemble of conformations is generated by molecular
dynamics simulations. Then reference restraints are obtained
from this ensemble by averaging a set of interatomic distances
chosen to be equivalent to those generated by typical experi-
mental measurements. Finally the reference ensemble is recon-
structed by using the reference restraints in ensemble-restrained
molecular dynamics simulations. This type of validation strategy
has a long history71 and is similar to the one that we described
for establishing the MUMO method32 and more recently to
prove that native free energy landscapes can be calculated with
high accuracy.72

The test of the reference ensemble has the advantage that all
aspects of the state to be characterized are known. There are
many advantages in testing a computational method in this way.
Problems related to possible inaccuracies in the experimental
data and in the translation of experimental NMR signals into
structural restraints are avoided.32,71,72 Moreover, the ensembles

produced using ensemble-restrained molecular dynamics simu-
lations can be compared to the reference ensembles from which
the restraints were calculated in terms of both averages and
distributions. This aspect is important because ensembles of
conformations are best described in terms of distributions,
whereas experimental observables are both time- and ensemble-
averages. Thus testing the method using reference data provides
a unique opportunity carry out cross-validation using quantities
that report on both the averages (Q values, see Methods) and
the distributions (S values, see Methods).

The generation of a realistic reference ensemble is, however,
by itself a computational challenge. The use of explicit solvent
models does not allow sufficient sampling to encompass the
time scale of motion in disordered states, which can extend to
milliseconds or more. Implicit solvent models provide faster
alternatives but tend to favor the compact structures character-
istic of globular proteins, at least in the case of those that we
have tested and when the simulations are carried out at room
temperature.

To generate less compact structures, one possibility is to raise
the temperature in the simulations to shift the balance between
the energy and the entropy of the protein to favor the sampling
of more disordered states. The disadvantage of this procedure
is that high energy conformations are generated. Since the
purpose here, however, is to generate only a reference ensemble,
this problem may be ignored. Indeed, we are not concerned at
this stage about whether our reference ensemble is an exact
reflection of the ensemble of structures sampled by native
R-synuclein under experimental conditions. Our aim is to
establish a computational procedure that is capable of reproduc-
ing a known reference ensemble and can therefore be used with
confidence to reconstruct an unknown ensemble. We will also
present below an alternative procedure based on the prediction
of experimental measurements not used as restraints in the
simulations.

We generated two reference ensembles of R-synuclein
structures, UERg23 (unrestrained in EEF1 implicit solvent with
〈Rg〉 ∼23 Å) and UERg20 using unrestrained molecular dynam-
ics simulations with the EEF173 implicit solvent model (Table
1). The simulation temperature for UERg23 was chosen so that
the 〈Rh

-1〉-1 was close to that of the previously obtained ensemble
of R-synuclein structures11 and the experimental value for
R-synuclein in solution74 (26.6 ( 0.5 Å). Because experimental
data and previous simulations suggested that R-synuclein in
solution has a tendency to form contacts between the C-terminus
and the central NAC region,11 only structures with more than
15 contacts between these two regions were included in the
reference ensemble. This selection process reduced the 〈Rh

-1〉-1

by about 1 Å but did not markedly change other ensemble-
averaged quantities (data not shown). The UERg20 ensemble
contains more compact conformations (〈Rg〉 ∼20 Å) and was
not filtered.

Minimization of Over-Restraining and Under-Restraining.
Disordered states comprise heterogeneous ensembles of struc-
tures.15,16 Consequently, it is not appropriate to enforce restraints
upon a single replica, since a single structure compatible with
all of the restraints is unlikely to be representative of the
structures actually present and may even be physically impos-
sible to obtain.21,28,75 This problem, sometimes referred to as

(70) Lee, J. C.; Gray, H. B.; Winkler, J. R. J. Am. Chem. Soc. 2005, 127,
16388–16389.

(71) Kuriyan, J.; Petsko, G.; Levy, R. M.; Karplus, M. J. Mol. Biol. 1986,
190, 227–254.

(72) De Simone, A.; Richter, B.; Salvatella, X.; Vendruscolo, M. J. Am.
Chem. Soc. 2009, 131, 3810–3811.

(73) Lazaridis, T.; Karplus, M. Proteins 1999, 35, 133–152.

(74) Morar, A. S.; Olteanu, A.; Young, G. B.; Pielak, G. J. Protein Sci.
2001, 10, 2195–2199.

(75) Zagrovic, B.; van Gunsteren, W. F. Proteins 2006, 63, 210–218.
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over-restraining,16 arises because experimental data derived from
NMR spectroscopy are ensemble-averages over a large number
of molecules in solution and time-averages over the length of
the experiment.16,32

To avoid over-restraining, multiple copies of the molecule
can be simulated in parallel, with the restraints imposed on the
observables averaged over all replicas.16 The number of replicas,
however, cannot become too large because as this number
grows, the experimental information quickly becomes insuf-
ficient to define the structures of all of the replicas, a problem
known as overfitting, or under-restraining.16,32 The number of
replicas must therefore be carefully chosen so as to simulta-
neously avoid under-restraining and over-restraining.16,32

In a recent study, Ganguly and Chen76 suggested that the
use of PRE-derived distance restraints to characterize disordered
states of proteins is an underdetermined problem unless a large
number of distance restraints is used or additional sources of
information are also considered. The simulations upon which
they base this conclusion were carried out using 61 distance
restraints for a 56-residue protein. In our study we used 1000
reference distance restraints (about 7 per residue) or 595
experimental distance restraints (about 4.25 per residue) to
characterize the ensemble of structures populated by a 140-
residue protein, both of which are greater than the empirical
recommendation of 4 restraints per residue made by Ganguly
and Chen.76 Moreover, their results were generated using
symmetric bounds of (5 Å around the PRE-derived distances,
whereas we have shown here that asymmetric bounds perform
significantly better in the case of r-6 averaging. In addition,
we also used the experimental Rg value to direct the
conformational sampling, thus employing a further source
of structural information. We therefore conclude that the
procedure that we describe here meets the stringent criteria

proposed by Ganguly and Chen76 to avoid the generation of
underdetermined ensembles.

A standard means of determining the optimal number of
replicas is cross-validation.21,77-79 Typically, about 20% of the
data are excluded from the working data set (the restraints).
Reproduction of these free data provides a more stringent test
than satisfaction of the restraints. This is because, unlike
satisfaction of the restraints, which generally improves with
more replicas, reproduction of the free data becomes worse. This
type of cross-validation is particularly effective in identifying
the appearance of under-restraining, but it may not detect over-
restraining.16 For example, compact conformations of ∆131∆
satisfy this cross-validation test, even if they are over-
restrained.14

Choice of Distance Bounds. The averaging of the inverse sixth
power of the distance makes the PRE-derived distance restraints
particularly sensitive to conformations in which the unpaired
electron in the spin label is close to an amide hydrogen. As a
consequence, the fewer replicas there are, the greater the
proportion of replicas that must contain short distances to satisfy
the restraint at each point in time (Figure 1A and B). This effect
results in narrow distributions of distances, which contain mostly
short distances close to the r-6 average, and ultimately, in
ensembles of structures that are too compact (Table 2).
Accordingly, despite carrying out the molecular dynamics
simulations with ensemble-averaged restraints at temperatures
at which the 〈Rg〉 of an unrestrained ensemble matched that of
the corresponding reference ensemble, we found that upon
application of reference distance restraints the 〈Rg〉 decreased,
even with 32 replicas (Table 2).

(76) Ganguly, D.; Chen, J. H. J. Mol. Biol. 2009, 390, 467–477.

(77) Brünger, A.; Clore, G. M.; Gronenborn, A.; Saffrich, R.; Nilges, M.
Science 1993, 261, 328–331.

(78) Burling, F. T.; Weiss, W. I.; Flaherty, K. M.; Brunger, A. T. Science
1996, 271, 72–77.

(79) Brünger, A. Nature 1992, 355, 472–475.

Figure 1. Analysis of the effects of changing Nrep, L, and U on the distance distributions. The distribution of the distances rij, k(t) for each PRE-restrained
ensemble sampled over all time-points and all replicas is in black. The distribution of ensemble averaged distances dij(t) over all time points is in red. The
distribution of distances rij, k

ref calculated from UERg23 is in gray. Also shown are the overall time- and ensemble-average calculated from each PRE-
restrained ensemble, dij

calc, in green, and from UERg23, dij
ref, in blue, and the lower (L) and upper (U) bounds (cyan). The number of replicas, L, and U are

shown above each graph.
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We therefore investigated how to increase the range of
structures accessible to the ensemble of structures at each point
in time other than explicitly increasing the number of degrees
of freedom by increasing Nrep. The smaller L and U are, the
closer dij

calc(t) is to dij
ref at each step in the simulation (Figure 1B

and D). Altering Nrep does not directly control the range of
distances contributing to dij

calc(t) (i.e., the width of the distribution
of distances rij, k at each time-point, t). We found, however, that
a wider range of distances are sampled at each point in time if
Nrep is large (Figure 1A versus B). Increasing L and U is another
indirect means of allowing more variation in dij

calc(t). Over many
time-points, this variation results in a wider range of distances
being sampled for a given Nrep. Thus, increasing the tolerance
to instantaneous fluctuation in the ensemble-averaged observ-
ables compensates for the effects of using fewer replicas, thus
enabling the use of a smaller number of replicas and decreasing
the problem of overfitting.

In this work we exploit this equivalence to reproduce distance
distributions. In the simplest case of a uniform distribution, for
the time- and ensemble-averages with fewer replicas and larger
L and U to be equivalent to those obtained with more replicas
and smaller L and U, the dij

calc(t) over multiple time-steps must
be evenly distributed within dij

ref - L and dij
ref + U. If L and U

are equal, the range of dij
calc(t) collected over all time points would

then be evenly distributed around dij
ref, so that the r-6 average

calculated from the overall distribution of rij, k
calc, pooled over all

Nrep replicas and all time-points t, will be smaller than the
imposed restraint dij

ref because approximately half of the rij, k lie
between dij

ref and dij
ref - L, and these small rij, k have a

disproportionately large influence on dij
calc. If the tolerance is to

be used to compensate for using fewer replicas, then L and U
must be chosen such that the overall distribution of rij, k

calc contains
a smaller proportion of short distances. This can be done by

choosing L to be less than U, thus favoring dij
calc(t) > dij

ref at the
expense of dij

calc(t) < dij
ref.

We tested a range of different combinations of L and U with
16, 24, and 32 replicas, using reference PRE-like distance
restraints calculated from UERg23. The key results are sum-
marized in Table 2. At the simulation temperature of T ) 515
K, the 〈Rg〉 of an unrestrained ensemble generated using the
same implicit solvent model as was used for the ensemble-
restrained molecular dynamics simulations (USRg24) is similar
to that of UERg23, thus any difference in the 〈Rg〉 between the
restrained ensemble and UERg23 can be attributed to the effects
of the restraining method. We found that with L ) 1 and U )
8 we obtained the desired effect without leaving the upper bound
so large that it ceased to act as a restraint. Such unbalanced
bounds are reminiscent of those used for NOEs, which are also
subject to r-6 (or in some cases, r-3) averaging.

Cross-Validation with Multiple Observables. An important
point reflected in our results is that it is possible to reproduce
the average values of interatomic distances even if their
distributions are poorly reproduced. Indeed, we found little
correlation between the overall QPRE and SPRE values for a given
ensemble (Figure 2A). Thus the optimal conditions for the
reproduction of the r-6 -averaged PRE-derived distances are
not the same as for the reproduction of their underlying
distributions. This situation can occur because many different
distributions can give rise to the same average80 (Figure 3). By
contrast, two similar distributions can have a different average.
This is because different types of average report on different
aspects of the underlying distribution. A linear average, for
instance, lies near the center of the distribution, whereas a highly

(80) Bürgi, R.; Pitera, J.; van Gunsteren, W. F. J. Biomol. NMR 2001, 19,
305–320.

Figure 2. Relationship between the similarity of two distributions (S) and the agreement of the corresponding average values (Q). Correlation between the
SPRE values and (A) the QPRE values, (B) the SRg

values, and (C) the QRg
values. In each plot, the working data set is shown in black and the free data set

is in red. Each point represents a different ensemble-restrained simulation using distance restraints calculated from UERg23 (or UERg20) and a particular
combination of Nrep, L, and U.

Table 2. Systematic Study of the Effects of Variation of Nrep, L, and U on the Quality of Reconstructed Ensemblesa

Nrep L U 〈Rg〉 (Å) QRg SRg QwPRE QfPRE SwPRE SfPRE

16 5 5 18.3 0.21 1.24 0.11 0.16 0.47 0.43
24 5 5 19.3 0.17 0.96 0.09 0.14 0.39 0.37
32 5 5 20.0 0.14 0.78 0.10 0.17 0.35 0.34
16 1 1 13.8 0.41 2.0 0.11 0.16 0.66 0.54
24 1 1 17.6 0.24 1.42 0.09 0.21 0.57 0.51
32 1 1 17.9 0.23 1.34 0.10 0.15 0.51 0.45
16 1 8 19.9 0.14 0.80 0.17 0.15 0.38 0.38
24 1 8 21.2 0.09 0.45 0.15 0.13 0.30 0.29
32 1 8 21.9 0.06 0.33 0.15 0.13 0.28 0.28

a The 〈Rg〉, Q, and S values assess the similarity between the reference ensemble UERg23 and that generated by molecular dynamics simulations with
ensemble-averaged distance restraints, varying the number of replicas (Nrep) and the lower (L) and upper (U) bounds as shown. QRg

and SRg
refer to the

Rg, QwPRE and SwPRE to the working PRE distance restraints, and QfPRE and SfPRE to the free PRE distances.
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nonlinear average such as the r-6 average lies toward the edge
and is most influenced by the outliers in the distribution (Figure
3). Thus the poor correlation between SPRE and QPRE is caused
by nonmatching left-hand sides of the distributions (data not
shown). The lack of correlation between QPRE and SPRE

constitutes a challenging problem since S values are normally
known only for reference ensembles. Strategies that use
experimental data can therefore often only use Q values for
validation. In the following we present a way to overcome these
difficulties.

If it is possible to use multiple experimental techniques to
measure different types of average for the same or related
observables, then these can be combined to give more informa-
tion about the shape of the underlying distribution. Proof of
this principle was given by Choy et al.,81 who were able to
obtain a more precise description of the Rg distribution of an
unfolded protein when they fitted the distribution function to
both the 〈Rg

2〉1/2 obtained from SAXS and the 〈Rh
-1〉-1 obtained

from PFG-NMR simultaneously.
In this work we adopt a similar strategy, but with one

difference. In our case we use observables that report on two
different aspects of the structure, namely, the PRE-derived
distances and Rg or, in the case of experimental data, 〈Rh

-1〉-1.
In order for the information contained in the r-6 -averaged PRE-
derived distances and the linearly averaged Rg to be combined,
the first requirement is that the distributions of each type of
observable are correlated. We find that this is indeed the case
since ensembles for which SPRE are low also have low SRg

(Figure
2B). In fact, we find that QRg

is also highly correlated with SPRE

(Figure 2C), most likely because the linearly averaged Rg is

most sensitive to the center of the distribution, and the
correlation of the S values indicates that the distributions of
the two types of observable are broadly similar. These observa-
tions lead us to the conclusion that cross-validation against
different types of average, which report on different aspects of
the underlying distribution, provides a better measure of whether
the distributions and the ensembles are correct. Thus when we
use experimental data, we refer to Qtot ) QRg

+ QPRE to
determine when we have reconstructed the ensemble correctly.

General Protocol for Molecular Dynamics Simulations of
Disordered States of Proteins with Ensemble-Averaged Dis-
tance Restraints from PRE Experiments. As part of the
systematic study described here we have designed a protocol
applicable to any type of disordered state for which both PRE
measurements and a measure of the global size, such as the Rg

or Rh are available (Figure 4). After the heating and equilibration

(81) Choy, W. Y.; Mulder, F. A. A.; Crowhurst, K. A.; Muhandiram, D. R.;
Millett, I. S.; Doniach, S.; Forman-Kay, J. D.; Kay, L. E. J. Mol. Biol.
2002, 316, 101–112.

Figure 3. Examples of distance distributions and their averages. (A) Distributions having equal nonlinear averages but different linear averages. (B) Distributions
having equal linear averages but different nonlinear averages. (C) Distributions having equal linear and nonlinear averages.

Figure 4. Protocol for carrying out molecular dynamics simulations of disordered states of proteins with ensemble-averaged distance restraints. We set Nrep

) 24, L ) 1, and U ) 8. The molecules are first heated to Tmax (in our case 750 K) in 50 K increments, and then the force constant, R, is increased to a value
that is sufficiently high that the restraints are satisfied but not so high as to cause large changes in the energy (we used R ) 364, 500 kcal mol Å-2). The
next three steps form a loop in which, after an equilibration phase in which the temperature is held constant, a set of structures is collected for the cross-
validation test, before the temperature is lowered by ∆T ) 25 K and the process is repeated. We found that the 1920 structures (80 per replica) collected
at each temperature were sufficient to obtain reliable estimates of QRg

and QPRE and thus Qtot. At the temperature at which Qtot is optimized, further structures
are collected. Finally, the energy of these structures may be minimized in a more accurate solvation model such as GB/SA or explicit water at 300 K to
eliminate any unfavorable local conformations.

Table 3. Reproduction of the UERg23 Ensemble Using the
Method Described in This Worka

T (K) 〈Rg〉 (Å) QRg SRg QwPRE QfPRE Qtot SwPRE SfPRE

500 20.4 0.12 0.635 0.15 0.15 0.42 0.31 0.31
525 21.5 0.07 0.381 0.16 0.15 0.38 0.31 0.31
550 22.5 0.03 0.215 0.16 0.16 0.35 0.30 0.29
575 23.0 0.01 0.111 0.17 0.18 0.36 0.29 0.28
590 23.2 0.00 0.061 0.17 0.15 0.32 0.26 0.25
600 23.4 0.01 0.069 0.17 0.17 0.35 0.29 0.28
625 23.6 0.02 0.094 0.18 0.19 0.39 0.29 0.27
650 24.1 0.04 0.143 0.19 0.21 0.44 0.28 0.28
675 24.4 0.05 0.196 0.19 0.24 0.48 0.29 0.29
700 24.5 0.06 0.211 0.20 0.25 0.51 0.30 0.29
725 24.4 0.05 0.243 0.22 0.25 0.52 0.30 0.29
750 24.7 0.06 0.284 0.21 0.28 0.55 0.30 0.30

a The 〈Rg〉, Q, and S values quantify how well UERg23 (Rg ) 23.2
Å) is reproduced using the method illustrated in Figure 4. QRg

and SRg

refer to the Rg, QwPRE and SwPRE to the working PRE distance restraints,
and QfPRE and SfPRE to the free PRE distances. The results for the
optimal T are in bold type.
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phases (see Methods), we carry out an iterative process to
determine the optimal simulation temperature.

In using this protocol to reproduce UERg23, we find that at
T ) 590 K there is a clear minimum in the Q and S values
(Table 3). We designate the ensemble produced at this T
RSRg23. At the global level, the 〈Rg〉 of RSRg23 is perfectly
matched to that of the reference ensemble. Moreover, the
reproduction of the distance distributions is particularly good
(Table 3 and Figure 5B-D); only three distance distributions
are shown in Figure 5, as it is not practical to examine all of
them individually in this way. Instead, we created an sl map,
which provides a means of visualizing the quality of the
reconstruction of all interatomic distance distributions (Figure
5G). The color of each point represents how similar the distance
distributions between the residues indicated on the axes are for
UERg23 and RSRg23. Even for pairs of residues near the region
of highest sl values (e.g., D), the distance distributions are in
fact quite similar (Figure 5D).

In addition to the SPRE value, a graphical representation of
how well the distributions were reproduced throughout is
provided by the overall pairwise distance distribution function,
p(r). This is one of the few experimentally accessible distribution
functions, obtained by taking the sine Fourier transform of the
SAXS scattering profile of a protein in solution.82,83 The
experimental p(r) includes contributions from all pairs of
interatomic distances within a macromolecule. Here, it was
approximated by considering only CR-CRdistances to reduce
the computational cost. This approximation is justified because
we only compare reference p(r) distributions.

As well as comparing the p(r) for UERg23 and RSRg23, we
also consider the p(r) of RC, USRg24, and UST590 to show
the degree of difference in p(r) to be expected between different
ensembles and thus emphasize how similar our reference and

reconstructed ensembles are. For small values of r, the p(r) of
all of the ensembles overlay, with two well-defined peaks at
about 4 and 7 Å, respectively, corresponding to residues close
together in sequence (Figure 5F). Thereafter, the p(r) for RC is
considerably flatter and broader than the p(r) of the other
ensembles, as is expected given its much larger 〈Rg〉 (Table 1).
The much broader and flatter p(r) of UST590 compared to that
of RSRg23 reveals the extent of the compaction effects induced
by the application of PRE-derived distance restraints. The p(r)
of UERg23 and USRg24 are similar. However the p(r) of
RSRg23 provides an even closer match to that of UERg23,
indicating that the application of PRE-derived distance restraints
provides additional information not present in the effective
energy function defined by the force field and solvent model.

To test the generality of the protocol, we also reconstructed
a more compact reference ensemble, UERg20, using 24 replicas
with L ) 1 and U ) 8. We were again able to accurately
reproduce the reference ensemble in terms of distributions and
averages (data not shown), indicating that this method is
applicable to different types of ensembles. The optimal T in
each case depended on the broadness of the ensemble being
reproduced and the compactness of the structures, being lower
for narrower ensembles and more compact structures.

On the Definition of an Ensemble of Structures. The structure
of a protein is readily defined in terms of the positions of its
atoms. By contrast, it is much more difficult to define the
ensemble of structures representing its thermal fluctuations. Such
an ensemble contains many structures, thus it is impractical to
provide the atomic coordinates of all of them together with their
statistical weights.

One way of defining ensembles of conformations is in terms
of the probability distributions of interatomic distances. In this
definition, two ensembles are equal if all the probability
distributions are equal. In terms of S values (see Methods), equal
ensembles result in S ) 0. This definition becomes ambiguous,
however, in the presence of correlated motions as then two
ensembles may differ even if all their distance distributions are

(82) Bilsel, O.; Matthews, C. R. Curr. Opin. Struct. Biol. 2006, 16, 86–
93.

(83) Svergun, D. I.; Koch, M. H. J. Rep. Prog. Phys. 2003, 66, 1735–
1782.

Figure 5. Comparison of the reconstructed ensemble (RSRg23) with the corresponding reference ensemble (UERg23). (A) Rg distributions. (B-D) Three
examples of PRE distance distributions for residues: (B) 17-110, (C) 51-98, and (D) 68-115. (E) Scatter plot of PRE distances. For the distributions,
UERg23 is shown in black and RSRg23 in red. In the scatter plot, the working data set is in black and the free data set in red. (F) Comparison of p(r) for
(black) UERg23, (red) RSRg23, (green) USRg24, (blue) UST590, and (yellow) RC. (G) sl map showing the overall agreement between UERg23 and
RSRg23 in terms of distributions. The locations of the pairs of residues for which the distributions are plotted in panels B-D are indicated on panel G.
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equal. This possibility is illustrated in Figure 6, where the joint
distributions, p(rAB, rAC), and the product of the distributions,
p(rAB)/ p(rAC), are plotted for three different combinations
of pairs of atoms exhibiting a range of s l values. In the presence
of correlations, the joint distribution exhibits an elongated shape,
whereas the product remains roughly spherical.

To investigate the presence of correlations in our ensembles,
we used sp values to quantify the similarity between the 2D
histograms of p(rAB, rAC) and p(rAB)/p(rAC) and then plotted
these sp values as 2D contour plots (Figure 7). In UERg23, there
are few correlations, other than those arising from the persistence
length of the polypeptide chain. RSRg23 is essentially identical
in this respect. The lack of correlations means that in this case,
if all of the probability distributions are the same, as demon-
strated by the low sl values when comparing these two
ensembles, then they can be considered to be equal.

Free Energy Landscapes. Free energies calculated from
molecular dynamics simulations with experimentally derived
restraints are different from those computed from unrestrained
simulations as a result of the addition of the restraint energy
potential to bias the conformational search. Since the restraint

term can be viewed as a correction to the underlying force field,
an estimate of the free energy can be made by computing the
population with respect to a given coordinate or set of
coordinates.72 In this way, we generated free energy landscapes
for the reference ensemble UERg23, an unrestrained ensemble
generated using the same implicit solvent model as when the
restraints are applied and containing structures of a similar size
to the reference ensemble (USRg24), the reconstructed ensemble
RSRg23 and the random coil ensemble (Figure 8). The very
good agreement between the free energy landscapes of UERg23
and RSRg23, in combination with the very different free energy
landscapes of URERg24 and RC shows that adding a penalty
energy function based on distance restraints to the existing force
field is able to alter the resulting ensemble of structures to match
that from which the restraints were derived.

Application of the Method Using Experimentally Derived
PRE Distances. So far in this work we have developed and
discussed a protocol for performing ensemble-restrained mo-
lecular dynamics simulations that is capable of accurately
reconstructing disordered state ensembles. We now apply this
procedure to characterize the natively unfolded protein R-sy-

Figure 6. Identification of the presence of correlated motions in an ensemble. (A-C) Products of the distance distributions p(rAB)/p(rAC). (D-F) Joint
probability distributions p(rAB, rAC) for UERg23. The triplets of residues used: (A and D) A ) 1, B ) 105, C ) 116 (sl ) 0.86); (B and E) A ) 1, B )
71, C ) 130 (sl ) 0.50); (C and F) A ) 82, B ) 71, C ) 130 (sl ) 0.23).

Figure 7. Representation of the sp values, which we used to quantify the agreement between p(rAB, rAC) and p(rAB)/p(rAC). (A and C) A ) 29; (B and
D) A ) 71 for (A and B) the UERg23 ensemble and (C and D) the RSRg23 ensemble.
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nuclein using distances derived from PRE experiments. This
task has been carried out previously using a similar method11

but with some important differences.
First, the previous ensemble of structures of R-synuclein was

biased to have an overall size similar to that of R-synuclein in
D2O at 298 K (〈Rh

-1〉-1 ) 26.6 Å).74 The PRE measurements,
however, were carried out in phosphate buffer with 100 mM
NaCl at 283 K. Subsequent measurements in Mes-Na buffer
with 100 mM NaCl at 288 K revealed that R-synuclein is more
expanded in the presence of salt (〈Rh

-1〉-1 ) 32.0 Å).84 We
therefore used a value of 〈Rh

-1〉-1 ) 32.0 Å to calculate QRh
. In

addition, we used a further 119 distances obtained from a spin
label positioned at residue N122 that were not available
previously. We chose the simulation temperature according to
our general protocol (Figure 4). We only included distances
calculated from 0.15 < Iox/Ired < 0.85 (for which both L and U
were applied) for the calculation of QPRE, as the distances
calculated from the experimental PRE data are not reliable for
Iox/Ired outside these bounds. We found that QPRE changes very
little with T (Table 4), highlighting how insensitive the r-6

average is to the nature of the underlying distribution. QRh

therefore provided the greatest contribution to Qtot, which is the
means by which we chose the optimal simulation temperature
(490 K).

The ensemble of structures that we determined is character-
ized by a broad Rg distribution (Figure 10A), indicative of the

wide range of different structures populated by R-synuclein. It
is wider and shifted toward larger values of Rg relative to the
previously obtained ensemble, in keeping with the larger 〈Rh

-1〉-1.
However, the Rg distribution of RC contains larger Rg values
and is broader than that of either of the ensembles produced
using ensemble-restrained molecular dynamics simulations,

Figure 9. Comparison of the distance distributions from experimental electron transfer (ET) data with those calculated here from the ensemble of R-synuclein
structures. The red lines are the fit of the worm-like chain model to experimental electron transfer (ET) data,70 and the black bars show the distributions
calculated from the ensemble of R-synuclein structures obtained using ensemble-restrained molecular dynamics simulations with experimental distance
restraints; residue pairs are shown above each graph.

Figure 8. Comparison of the free energy landscapes of various ensembles. (A) UERg23, (B) USRg24, (C) RSRg23, and (D) RC. The free energy is defined
as F(Rg, SASA) ) -ln p(Rg, SASA). For comparison, we report in Supporting Information the free energy landscape as a function of Rg and the end-to-end
distance Ree.

Table 4. Selection of the Simulation Temperature Using
Experimental Restraints for R-Synucleina

T (K) 〈Rh
-1〉-1 (Å) QRh QwPRE QfPRE Qtot

475 31.3 0.018 0.18 0.21 0.41
490 32.1 0.006 0.19 0.20 0.40
500 32.6 0.021 0.19 0.22 0.42
525 33.2 0.042 0.19 0.20 0.43
550 33.7 0.056 0.19 0.20 0.45
575 34.2 0.069 0.20 0.19 0.46
600 34.3 0.085 0.20 0.20 0.49
625 34.5 0.081 0.20 0.20 0.48
650 34.6 0.085 0.21 0.20 0.50
675 34.8 0.092 0.21 0.20 0.50
700 34.9 0.094 0.21 0.21 0.51

a The Q values quantify how well the experimental 〈Rh
-1〉-1 (32.0 Å)

and the PRE distances for R-synuclein are reproduced using the method
illustrated in Figure 4. QRh

refers to the 〈Rh
-1〉-1, QwPRE to the working

data set (80% of the PRE distances), and QfPRE to the free data set
(remaining 20%). The results for the reconstructed ensemble at the
selected T are in bold type.
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indicating that the size and range of structures accessible to
R-synuclein in solution is reduced relative to a random coil.

To validate our ensemble of R-synuclein structures, we
calculated distributions of inter-residue distances and compared
them to the distributions fitted to the results of electron transfer
(ET) measurements.70 This is an important test of the ability of
our method to reproduce distributions as well as averages. It
should be noted, however, that the nature of the fitted distribu-
tions depends on the fitting method used. Nevertheless, our
calculated distributions are in reasonably good agreement with
those determined experimentally (Figure 9), thus providing
additional support for the validity of our ensemble and our
general method.

The nature of the structures comprising the ensembles
obtained previously and here are summarized by residual contact
probability (RCP)11 and distance comparison (DC) maps (Figure
10B and C). RCP maps, which were used in our previous
characterization of R-synuclein,11 show the probability of
occurrence of distances shorter that 8.5 Å, whereas DC maps
are sensitive to the position of the center of the inter-residue
distance distribution and thus the most frequently observed inter-
residue distances.

As expected, as a result of the more expanded structures
sampled, the pseudoenergies shown in the RCP maps are lower
and the values in the DC map are larger for the present ensemble
than for the previous ensemble. The RCP map of the previous
R-synuclein ensemble11 and the PRE data10,11 suggest prefer-
ential contact formation between the C-terminus and the central
NAC region. These contacts are still present but less pronounced
in the ensemble of structures generated here, whereas the contact
probability between residues 1-30 and the remainder of the
sequence remain similar. In addition, measures sensitive to
longer distances, such as the filtering method used by Bernardo
et al.60 and the DC measure used here, show that the distances
between the N- and C-termini are also short relative to those
expected for a random coil. These shorter distances are not so
apparent in the RCP maps as the large sequence separation
between the residues involved precludes the existence of many

distances less than 8.5 Å. Interestingly, the shortest inter-residue
distances involve the region around residue 120. This result is
in agreement with a range of experimental data, including
chemical shifts, R1 and R2 relaxation rates, heteronuclear
NOEs55,85 and in particular RDCs,10 all of which contain
anomalies in this region.

Other features of the DC maps also correlate with experi-
mental data. A DC value near 1.0 for residues close together in
sequence in the N-terminus may be indicative of residual helical
structure, as the rmsd for an R-helix and a random coil are
indistinguishable for separations of up to eight residues.86 This
observation is in agreement with the experimental data for
R-synuclein in solution, which suggest some helical propensity
in the N-terminus.43,55 The larger DC values in the C-terminus,
which could correspond to either � or PPII structure,86 are most
likely attributable to � structure, as the experimental data for
R-synuclein does not indicate a tendency to form PPII struc-
ture.55 Ramachandran plots of the ensemble-averaged dihedral
angle preferences confirm that the region of the N-terminus
identified as being most helical experimentally has a slightly
greater propensity to form helical structure than the C-terminus
(Figure 10 E and F).

The relatively short distances between the N- and C-termini,
which are likely to have an electrostatic origin given the opposite
charges of the termini, may play a role in preventing aggregation
under normal solution conditions by reducing the accessibility
of the central hydrophobic NAC region. Such an effect would
be in keeping with experimental data suggesting that the
aggregation properties of R-synuclein are mediated by a subtle
interplay between charged residues distributed throughout the
sequence.52–54,57,57,87-90

The free energy landscape of R-synuclein as a function of
Rg and SASA (Figure 10 E) shows that R-synuclein mostly
populates conformations whose Rg and SASA are between 20%
and 50% greater than those of compact globular states. The most
populated region of the free energy landscape includes structures
with low Rg but high SASA, which may be advantageous for
increasing the binding surfaces of R-synuclein within the

Figure 10. Analysis of the ensemble of R-synuclein structures obtained using experimental PRE distances as ensemble-averaged restraints in molecular
dynamics simulations. (A) Rg probability distribution for (black) the ensemble of R-synuclein structures obtained here, (red) the ensemble previously obtained
with a smaller value of Rg,11 and (gray) a random coil ensemble. (B and F) RCP maps for the previous11 (B) and present (F) R-synuclein ensembles. (C and
G) DC maps for the previous11 (C) and present (G) R-synuclein ensembles. (E) Free energy landscape of R-synuclein, where the free energy is defined as
F(Rg, SASA) ) -ln p(Rg, SASA). (D and H) Ramachandran plots of the backbone dihedral angles averaged over the most helical portion of the N-terminus
identified experimentally, residues 6-37 (D) and the C-terminus, residues 103-140 (H).
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crowded cellular environment. This feature has been suggested
to provide a functional advantage for a number of natively
unfolded proteins3,91 but may also increase the risk of aggregation.

Conclusions

We have presented a general procedure for generating free
energy landscapes of disordered states of proteins using mo-

lecular dynamics simulations with ensemble-averaged distance
restraints derived from spin label NMR measurements. The
validity of this approach was demonstrated by a systematic
investigation in which known reference ensembles were recon-
structed with high accuracy in terms of both averages and
distributions of a range of observables. We then presented an
application of the method to calculate the free energy landscape
of the natively unfolded state of R-synuclein, which was
validated by showing an excellent agreement with distance
distributions obtained from electron transfer experiments. The
method that we have presented is general and can be applied to
highly heterogeneous states of proteins for which spin label
NMR measurements have been carried out.
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